GLOBAL WATER PATHOGEN PROJECT
PART FIVE. CASE STUDIES

HEALTH RISK OF BIOGAS EFFLUENT EXPOSURE AND HANDLING IN VIETNAM

Hung Nguyen-Viet
International Livestock Research Institute
Center for Public Health and Ecosystem Research - Hanoi University of Public Health
Hanoi, Vietnam

Le Thi Thu
Center for Public Health and Ecosystem Research - Hanoi University of Public Health
Hanoi, Vietnam

Luu Quoc Toan
Hanoi School of Public Health Vietnam
Hanoi, Vietnam

Phuc Pham-Duc
Center for Public Health and Ecosystem Research - Hanoi University of Public Health
Hanoi, Vietnam
Summary

Highlights

- The study provides a framework to estimate the health risk of farmers exposed to biogas effluent.
- The study addresses the SDG 6.3: to contribute to inform water recycling and reuse.
- Exposure to biogas effluent represents an important health risk.
- Risk mitigation should focus on exposure reduction including raising farmer awareness and use of personal protective equipment.
- Treatment of wastewater at the source to improve water quality is needed for long term intervention.

Graphical abstract

Introduction

The global increase in demand for livestock products has led to many concerns about the associated negative impacts of livestock rearing on the environment and on human health. In Vietnam, especially, the management of animal waste has become a considerable challenge due to the rapid increase in swine production. A common method to treat animal waste in Vietnam is anaerobic digestion, also called biogas technology. This is a microbiological process whereby organic matter is decomposed in the absence of oxygen. Animal manure as well as human faeces can be used as feedstock. The outputs of anaerobic digestion are biogas (a mix of methane and CO₂) and a digestate wastewater, which is the digested slurry existing in the biogas reactor. The efficiency of the biogas reactor in inactivating pathogens will depend upon the temperature and the residence time, which in turn will depend upon the efficiency of the hydraulics within the reactor.

Biogas plants in Vietnam have often been installed by farmers individually, and mostly at household scale without...
much technical support or advice. This frequently leads to biogas plants which are not properly designed, constructed, operated or maintained. This limits the efficiency of microbial removal and thereby affects biogas production.

Ha Nam is a province in the North of Vietnam where there is frequent use of biogas plants with farming households raising pigs. Many of these farmers use this effluent for irrigation of vegetables, crops and fruit trees, or then discharge it to drains. In addition, local people rarely use protective measures when handling the biogas wastewater to prevent exposure.

The risk associated with handling biogas effluent is not well known. The aim of this study was to quantitatively assess the diarrhea risk associated with exposure to biogas wastewater, that could occur while undertaking a range of common activities. The results were intended to provide a better assessment of health risk, assess safety and identify the need for further interventions.

Problem Formulation

The purpose of the QMRA was to assess the illness risk associated with exposure to biogas effluent while undertaking common activities. The scope of the QMRA was defined by:

- **Hazard identification:** Three enteric pathogens that can be transmitted from animals to humans were used as reference pathogens for the investigation: *E. coli* O157:H7, *G. lamblia* and *C. parvum*. Previous studies carried out in Vietnam showed high load of these pathogens in biogas effluent (Huong et al. 2014; Kobayashi et al., 2003) and wastewater (Phuc, 2012) and reported high prevalence of diarrhea in communities (Phuc, 2012; Trang et al., 2007).

Exposure pathways: Four scenarios of biogas effluent exposure were considered: (1) Irrigating crops (2) irrigating fruit trees (3) irrigating vegetables, and (4) unblocking the open drains connected to the effluent tanks. In each case, exposure was assumed to occur due to accidental ingestion of wastewater by splashing directly into the mouth or indirectly on hands and then to the mouth.

Health outcome: The annual risk of illness from each of the three reference pathogens was assessed. A stochastic assessment was selected to quantify the variability in quantified risk.

Exposure Assessment

- **Source:** From three communities, 15 households with biogas plants were randomly selected. At each household, two sampling points were identified: the first one at the effluent tank of the biogas plant and the second at the open household drain into which biogas effluent, wastewater and other runoff flow (Fig1a).

Figure 1 a) Scheme of a biogas plant and the two sampling points [Source adapted from Tilley et al., 2014]) (Image reproduced with permission of RightsLink / Springer Nature).
Figure 1 b) An open effluent tank of biogas plant in Hoang Tay, Ha Nam Province, Vietnam, 2014. (Image reproduced with permission of RightsLink / Springer Nature).

Figure 1 c) Open drain receiving biogas effluent in Hoang Tay, Ha Nam Province, Vietnam, 2014. (Image reproduced with permission of RightsLink / Springer Nature).
The effluent tank of the biogas plant is a point of exposure as that is where farmers collect effluent for irrigation of fields (see Fig 1b). The household open drain is also considered a potential point of exposure as this drain often needs to be unblocked by users (see Fig 1c). Three wastewater samples were collected at each sampling point. Thus, five rounds of sampling gave us a total of 150 wastewater samples collected from April to December 2014. Results are summarised in Table 1.

Table 1. Mean concentrations of pathogens at two exposure points from 15 households in three communes of Ha Nam Province, Vietnam, 2014. (Source: Le-Thi et al., 2017)

<table>
<thead>
<tr>
<th>Sampling Points</th>
<th>Pathogens</th>
<th>Number of Samples</th>
<th>Number of Positive Samples (%)</th>
<th>Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>unit</td>
</tr>
<tr>
<td>Biogas Effluent in Effluent Tanks</td>
<td></td>
<td></td>
<td></td>
<td>CFU/100mL</td>
</tr>
<tr>
<td>E. coli</td>
<td>75</td>
<td>75 (100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. lamblia</td>
<td>75</td>
<td>33 (44.0)</td>
<td>Cysts/100mL</td>
<td>19</td>
</tr>
<tr>
<td>C. parvum</td>
<td>75</td>
<td>26(34.7)</td>
<td>Oocysts/100mL</td>
<td>18</td>
</tr>
<tr>
<td>Drains Connected to Effluent Tanks</td>
<td></td>
<td></td>
<td></td>
<td>CFU/100mL</td>
</tr>
<tr>
<td>E. coli</td>
<td>75</td>
<td>75 (100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. lamblia</td>
<td>75</td>
<td>18 (24.0)</td>
<td>Cysts/100mL</td>
<td>4</td>
</tr>
<tr>
<td>C. parvum</td>
<td>75</td>
<td>22 (29.3)</td>
<td>Oocysts/100mL</td>
<td>12</td>
</tr>
</tbody>
</table>

*SD standard deviation

b) Barriers/controls: No barriers were considered in the risk calculations, however use of personal protective equipment was investigated by survey.

c) Exposure: A survey was conducted in each of the three communities to assess the intensity and duration of exposure associated with each of the defined activities. From a total of 1500 households with biogas plants, 451 households were randomly selected. The survey recorded basic characteristics of biogas including their age, material used (animal or with human faeces) and residence time. The majority of respondents (84%) indicated that their main occupation was working in agriculture. The frequency of exposure, ingestion dose of wastewater, and percentage of the population who participated in each exposure event are shown in Table 2. For the study, it was assumed that 1mL of wastewater would be involuntarily ingested with each exposure event (Hoglund et al., 2002; Ottoson and Stenstrom, 2003).

Table 2. Dose assumptions, frequency of exposure and percentage of the exposure population in 3 communes of Ha Nam Province, Northern Vietnam, 2014 (Source: Le-Thi et al., 2017)

<table>
<thead>
<tr>
<th>Sampling Points</th>
<th>Activities</th>
<th>Ingestion Dose of Wastewater</th>
<th>Average Frequency (event/year)</th>
<th>Percentage of Population (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas Effluent in Effluent Tanks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigating vegetables</td>
<td>1mL/event</td>
<td>48</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Irrigating crops</td>
<td>1mL/event</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Irrigating fruit trees</td>
<td>1mL/event</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>
Health risk of biogas effluent exposure and handling in Vietnam

Sampling Points

<table>
<thead>
<tr>
<th>Sampling Points</th>
<th>Activities</th>
<th>Ingestion Dose of Wastewater</th>
<th>Average Frequency (event/year)</th>
<th>Percentage of Population (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drains Connected to Effluent Tanks</td>
<td>Unblocking drains</td>
<td>1mL/event(^a)</td>
<td>53</td>
<td>30</td>
</tr>
</tbody>
</table>

\(^a\)Microbial risk assessment of source-separated during used in agriculture (Hoglund et al. 2002; Ottoson and Stenstrom 2003)

\(^b\)Fecal contamination of greywater and associated microbial risks (Hoglund et al., 2002; Ottoson and Stenstrom 2003)

Health Effects Assessment

The probability density functions used in the risk calculations for source and exposure are given in the original publication (link below).

Dose-response models, and illness probabilities from the published literature were selected for each of the three reference pathogens. These are summarised in Table 3.

Table 3. Health effects assessment assumptions applied in the study

<table>
<thead>
<tr>
<th>Reference Pathogen</th>
<th>Dose-Response Model</th>
<th>Reference</th>
<th>Probability of Illness Given Infection</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli O157:H7</td>
<td>Beta-Poisson</td>
<td>Teunis et al. 2008</td>
<td>0.25</td>
<td>Howard et al. 2006</td>
</tr>
<tr>
<td></td>
<td>approximation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. lamblia</td>
<td>Exponential</td>
<td>Haas and Eisenberg, 2001</td>
<td>0.67</td>
<td>Rose et al. 1991</td>
</tr>
<tr>
<td>C. parvum</td>
<td>Exponential</td>
<td>Haas and Eisenberg, 2001</td>
<td>0.7</td>
<td>WHO, 2006</td>
</tr>
</tbody>
</table>

Risk Characterization

Figure 2. Annual risks of diarrhea in the different activities estimated by 10,000 trial Monte Carlo simulations in Vietnam, 2014 (Source: Le-Thi et al., 2017)

Risk Management

The high risks calculated in this study suggest that further actions to improve biogas effluent quality are required to reduce health risk. The study provides evidences to enhance the awareness of people when handling biogas wastewater, and hence promoting practices of using personal protective measures including wearing gloves, wearing face masks, wearing boots and washing hands with soap after work.

Evaluation of the QMRA

The QMRA provided a way to interpret the significance of the measured concentrations of pathogens in the biogas wastewater. The investigation of how biogas wastewater was being used in the community, together with potential exposure scenarios, allowed for the local context to be considered. In addition, the current use (or non-use) or protective equipment provided context for the efficacy of existing risk management options. The combination of
environmental microbiology, analysis of local behaviours and quantified in terms of diarrheal risks, provides a powerful platform to advocate for improved safety, and community understanding of the risks associated with the biogas wastewater.

Read the full article at: https://link.springer.com/article/10.1007/s00038-016-0917-6
References

